SMART GAM: Using Monitoring Technologies to Manage Geotechnical Assets ## Mazzanti Paolo TRB2017 Implementation of Geotechnical Asset Management Washington DC, 11-01-2017 #### **SMART?** ## "SMART" (adj.): equipped with, using, or containing electronic control devices Smart....car Smart....phone Smart....house Smart....GAM? #### **Geotechnical Assets Management** ### **Geotechnical Assets Management** Goals and Policies and Strategy Starting Point **Asset Inventory** Condition Assessment Performance Modelling Level of Service and Demand Aspirations Performance Gaps and Lifecycle Planning Option Identification **Option Evaluation and Program Optimisation** and Risk Assessment **Decision Making Development of Investment Plans** Short Term- Forward Works Programme Service Delivery Long Term Plans - Physical works and services Program Implementation, Co-operation Checking Corrective action and management Performance review Monitoring #### "SMART" Geotechnical Assets Management DATA & KNOWLEDGE ARE CONTINUOSLY UPDATES BY USING SUITABLE MONITORING EQUIPMENT!! ### The leitmotif # Application of New Sensing and Monitoring Technologies to the Assessment and Control of Natural Hazards and Civil Strutures and Infrastructures #### THE OBSERVATIONAL METHOD! Karl Terzaghi 1937 Settlement of structures in Europe and methods of observations. American Society of Civil Engineers. Proceedings, Vol. 63, pp. 1358-1374 Ralph Peck 1969 Advantages and limitations of the observational method in applied soil mechanics. Géotechnique, 19(2), 171-187 ## THE NEED OF GEOTECHNICAL MEASUREMENT EQUIPMENT....60 YEARS OF TECHNOLOGICAL "r"EVOLUTION | 1950s | 1960s | 1970s | 1980s | 1990s | 2000s | 2010s | |--------------|-------------------------|--------------------------|------------------------------|-----------------------------|--|------------------------------| | Load cell | Inclinometer | Laser distance-
meter | In place inclinometers | GNSS
Technology | Interferometric
Radar
technology | Wireless
monitoring | | Piezometer | Submarine
Monitoring | Data-logger | Time Domain
Reflectometry | Fibre Optics
technology | Multi-parametric
borehole systems | Web based data
management | | Extensometer | Vibration
Monitoring | | Total Station | GSM data
transmission | Laser Scanner | Drones | | Theodolite | | | US standards | Early Warning
Monitoring | European
Standards | Digital Image
Correlation | | Levelling | | | Continuous
Monitoring | | | | | Stressmeter | | | | | | | ### What we monitor.... | Parameters | Contact instruments | Remote instruments | | |-------------------------------|--|---|--| | Displacement
(deformation) | Surface and probe tiltmeter, inclinometer, extensometer, liquid
level gauge, crack gauge, TDR, fibre optic, pendulum,
deflectometer, convergence gauge | GNSS, total station, optical levelling, lidar, satellite SAR interferometry, terrestrial interferometric radar, digital image correlation, photogrammetry | | | Vibration | Accelerometer, velocimeter, seismometer, geophone | Terrestrial interferometric radar, digital image correlation | | | Acoustic emission | | | | | Groundwater pressure | Piezometer, observation well | n.a. | | | Stress | Earth pressure cell, stress-meter | n.a. | | | Load and strain | Load cell, strain gauge | n.a. | | | Temperature | Thermometer, thermocouple | InfraRed camera | | ### ...where we monitor... ## Monitoring Table for SMART GAM! | | Common applications | Common Instruments | |-------------------------|---|--| | Knowledge
Monitoring | Design phase Standard maintenance Screening after paroxysmal events (earthquakes, floods, etc) | LiDAR, Satellite SAR Interferometry, Terrestrial
Interferometric Radar, GNSS, Photogrammetry,
Observation Well, Piezometer, Inclinometer,
TDR, Earth Pressure Cell, Accelerometer,
Velocimeter, Seismometer | | Control
Monitoring | Construction phase in medium risk areas Advanced maintenance (critical segments) Verification of high risk area | LiDAR, Satellite SAR Interferometry, Terrestrial Interferometric Radar, GNSS, Photogrammetry, Total Station, Optical Levelling, Digital Image Correlation, Observation Well, Piezometer, Inclinometer, TDR, Extensometer, Earth Pressure Cell, Stress-meter, Load Cell, Strain Gauge, Fibre Optic, Pendulum, Deflectometer, Convergence Gauge, Surface and probe Tiltmeter, Liquid Level Gauge, Crack Gauge, Accelerometer, Velocimeter, Seismometer | | Emergency
Monitoring | Construction phase in high risk areas Early warning systems for operation in high risk areas | LiDAR, Terrestrial Interferometric Radar, GNSS,
Total Station, Piezometer, Inclinometer,
Extensometer, Strain Gauge, Fibre Optic,
Pendulum, Surface and probe Tiltmeter, Liquid
Level Gauge, Crack Gauge, TDR, Convergence
Gauge, Accelerometer, Velocimeter, Seismometer | ## **But...which equipment is SMART?** **Example 1: Monitoring of one Geotechnical Asset** ## **Example 1: Monitoring of one Geotechnical Asset** **Example 1: Monitoring of one Geotechnical Asset** **Example 1: Monitoring of one Geotechnical Asset** **Example 2: Monitoring one Geotechnical Asset** **Example 3: Monitoring of Several Geotechnical Assets** #### Field Surveys of Slope Failures ## Field Surveys of Slope Failures #### Online database ### How we can move forward with the SMART GAM? Reduce the distance between innovative monitoring solutions and GAM managers: 1) Development of suitable tools; www.sarinterferometry.com ### How we can move forward with the SMART GAM? Reduce the distance between innovative monitoring solutions and GAM managers: 2) Training about geotechnical monitoring at graduate and post-graduate level www.geotechnicalmonitoring.eu #### What I see in the future STEP 1: Monitoring will be a key part of each geotechnical asset program and not just an option STEP 2: The "monitorability" concept will enter in the dictionary of designers and insfrastructure owners ".... Dear Paolo, after our meeting end of November last year, I talked the project leader responsible for the engineering project inHe was really interested in the concept of making the infrastructure (bridges, fly-overs, tunnels, retaining walls ...) monitorable." ## Paolo Mazzanti paolo.mazzanti@nhazca.com www.nhazca.com