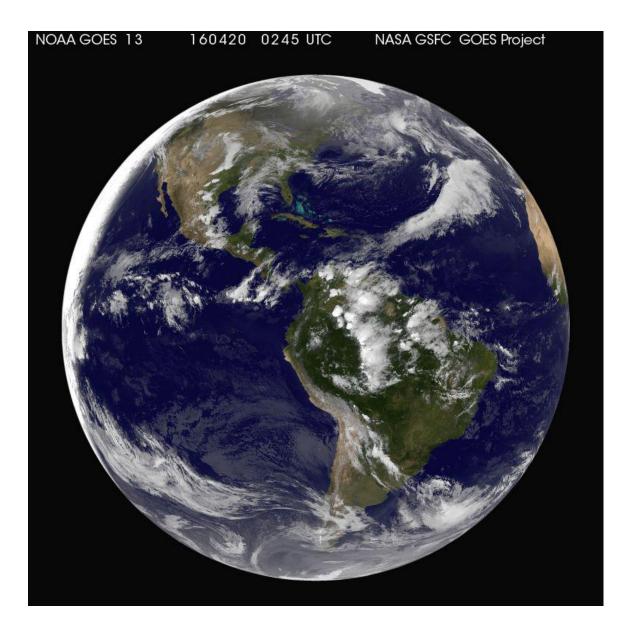
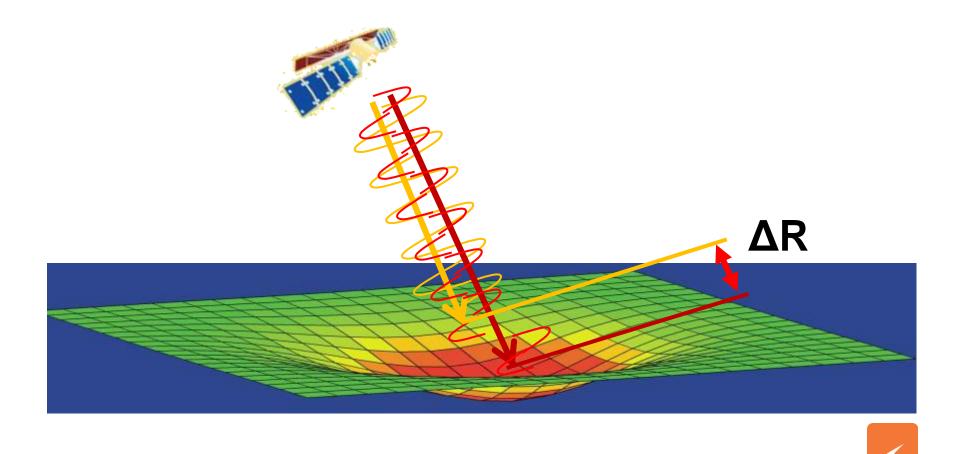


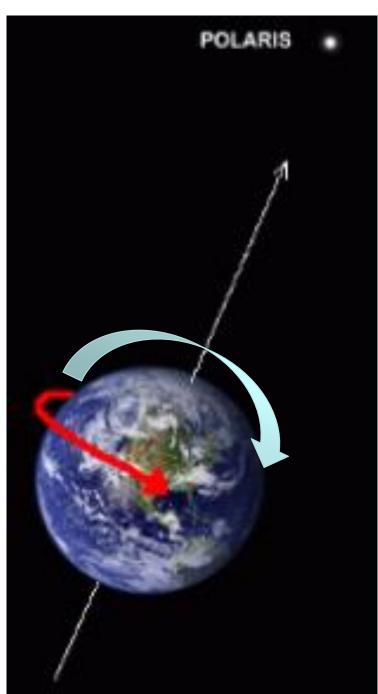
We bring innovation to transportation.

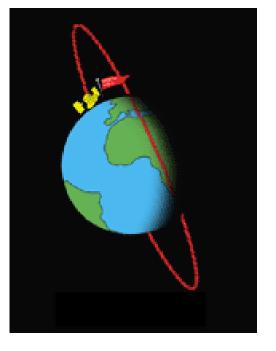

Application of Net Present Benefit to InSAR Monitoring

Audrey K. Moruza, Virginia Transportation Research Council (VDOT)


InInterferometricSSyntheticAApertureRRadar

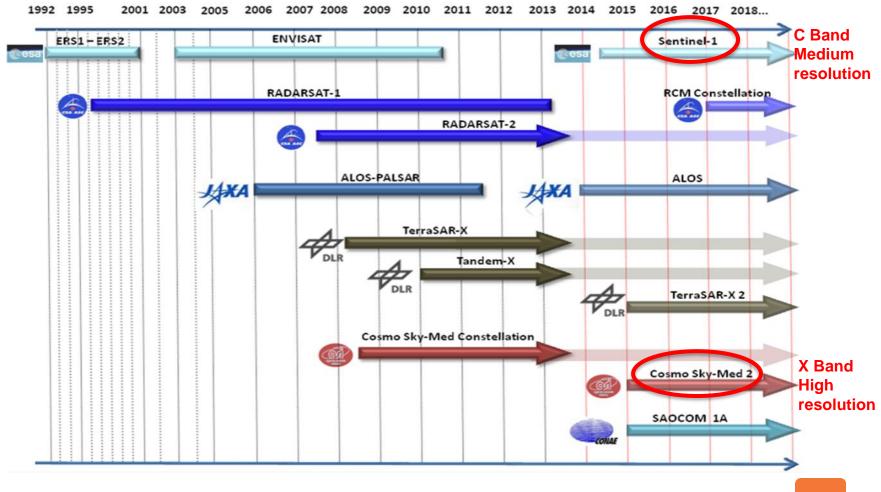
- Radar provides its own energy source to actively illuminate targets using microwave portion of EM spectrum, unlike passive optical systems;
- Sends microwave signal and receives a return signal as backscatter; notes strength and time delay of return signal;
- Synthetic aperture—created by forward motion of satellite platform and side-scanning operation of SAR device—is larger than physical antenna alone can give;
- Interferometry techniques use **phase change** of SAR signal over time (successive passes) to create 2-D images of remote surfaces;
- Measured differences in return signal **phase** are processed to produce images of surface elevation changes, precision on cm or even mm scale;
- Pixel resolution varies with signal bandwidth; horizontal resolution and area coverage are inversely proportional.


11/27/2017


5

Radar measurement of deformation

The rotation of the Earth on its axis under the path of the satellite allows twodirectional imagery of the target area (descending and ascending)



8

SAR Satellites, Past, Present and Future

Sentinel-1 C-Band Free of charge data *Credit: European Space Agency*

> COSMO-SkyMed X-Band Commercial data *Credit: Agenzia Spaziale Italiana*

Question

Can economic analysis inform a decision about trial of a technology when the benefits of the technology in specific applications are not **precisely** known?

Question

Can economic analysis inform a decision about trial of a technology when the benefits of the technology in specific applications are not precisely known?

Answer

Yes, with accuracy in proportion to the order of the least accurate data or parameter value.

12

Question

Can economic analysis inform a decision about trial of a technology when the benefits of the technology in specific applications are not precisely known?

Answer

Yes, with accuracy in proportion to the order of the least accurate data or parameter value.

Question

How can error be minimized for a given analysis?

Question

Can economic analysis inform a decision about trial of a technology when the benefits of the technology in specific applications are not precisely known?

Answer

Yes, with accuracy in proportion to the order of the least accurate data or parameter value.

Question

How can error be minimized for a given analysis?

Answer

By gathering accurate data, using an appropriate performance measure, and identifying variable parameters.

Question

What features should be present in an economic analysis of a technology trial?

Question What features should be present in an economic analysis of a technology trial?

Answer

• Accurate and current costs of activities potentially relieved by the technology

- Accurate and current cost(s) of the technology over the analysis period
 - A relevant analysis period
 - An explicit performance measure
- Variable parameters (quantities whose values are selected for the particular circumstances)

Case Study: InSAR Monitoring of VDOT Network

What inputs form the core of the economic analysis?

- Impacted VDOT activities and their current costs
 - Costs of the technology
 - Choice of relevant analysis period
 - Choice of an explicit and appropriate performance measure
 - Identified and variable parameters

Case Study: Core Inputs

- Impacted VDOT activities and their current costs
 - Geohazards slopes (slides), sinkholes \$9,151,823 average annual cost, FY 2013-2015
 - Culvert replacements \$12,289,187 average annual cost, FY 2013-2015
- Analysis period
 >5-year lease of InSAR package (no storage costs)
- Performance measure
 Not Present Repetit –

>Net Present Benefit = $\sum_i (B_i - C_i) / (1 + \rho)^i$

Case Study: Core Inputs

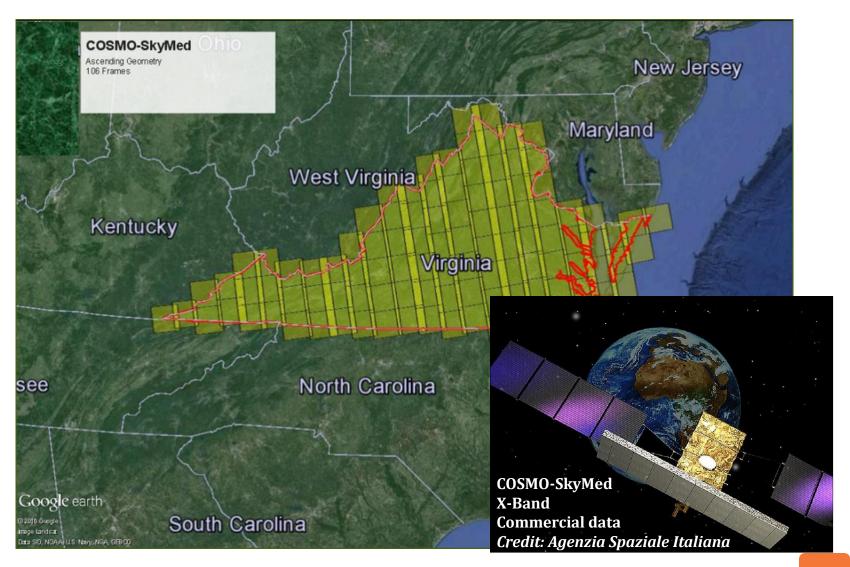
- Technology costs
 - Scenario 1

COSMO-SkyMed (CSK)

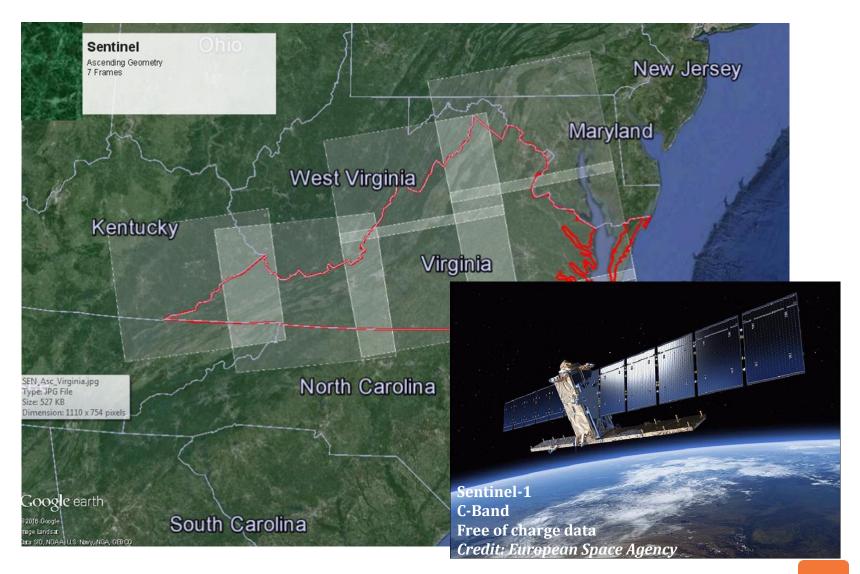
X band: 3x3 meter pixel size (high resolution)

16-day repeat \rightarrow 22 frames per annual stack

80 frames for network coverage


Estimated annual cost = \$9.52 million (data +

processing)


Scenario 2

Sentinel-1

C band: 5x20 meter pixel size (medium resolution) 12-day repeat → 30 frames per annual stack Approximately 12 frames for network coverage Estimated annual cost = \$648,000 (processing only)

Economic Analysis of Network-Wide InSAR Monitoring

Excel Model – Step 1 (Framework)

1	А	В	C	D	E	F	G	Н	I	J	
2											
3										_	
4				NETWOR							
5			EVENT COST DATA	YEAR 1	YEAR 2	YEAR 3	ANNUAL AVERAGE				
6			CULVERT REPLACEMENTS	IMPACTED	VDOT ACTIVITIES	AND THEIR CURRI	ENT COSTS				
7			GEOHAZARD REPAIRS								
8			ANNUAL COST OF INSAR DATA					ТЕСНИ	OLOGY		
9			CSK NETWORK COVERAGE		HIGH RESOLUTION			TECHN	01001		
10			SENTINEL-1 NETWORK COVERAGE	COSTS OF THE	MED RESOLUTION			OP1	TION		
11			CSK 1 SQ MI COVERAGE	TECHNOLOGY	CONFIRMATIO	N FRAME COST					
12			SENTINEL 1 SQ MI COVERAGE					-			
13		-	ANALYSIS YEAR								
14			DISCOUNT RATE (ρ)								
15		-	ANNUAL IN SAR COST TO VDOT				NUAL COSTS TO VE				
16			ANNUAL VDOT BENEFITS (B ₁)			ANN	UAL BENEFITS TO V	/DOT			
17											
18											
19			MODEL PARAMETERS	PARAMETER							
20				VALUES							
21 22											
22											
23			NET ANNUAL VDOT BENEFIT			NET AI	NNUAL BENEFITS TO	O VDOT			
24 25			NET PRESENT BENEFIT OVER	PERFORMANCE							
25			ANALYSIS PERIOD	MEASURE							
26											

ANALYSIS ASSUMPTIONS EXTERNAL DATA

How Are Annual VDOT Benefits Defined?

"Benefits" in year *i* are defined as **reductions in VDOT expenditures** on culverts and geohazards due to (unspecified) interventions facilitated by InSAR techniques in year *i*:

 $B_{i} = \sum_{\substack{Culverts, \\ geohazards}} DR_{event,i} \cdot SR_{event,i} \cdot Average annual cost of event_{i}$

where

i = 1,...5 (years)
Parameter DR = detection rate resulting from InSAR techniques
 (function of InSAR effectiveness);
Parameter SR = savings rate from interventions resulting from
 detection by InSAR techniques (function of agency
 effectiveness);
DR and SR measured as proportions of annual expenditures on
events.

NOTE: See compendium paper 17-02179 for discussion of parameter values in VDOT model.

Excel Model - Step 2 (Input values and formulas)

	А	В	С	D		E	F	G	Н	I
1										
2										
4				NETW						
5			EVENT COST DATA	2013		2014	2015	ANNUAL AVERAGE		
6			CULVERT REPLACEMENTS	\$ 10,976,8	77	\$ 13,457,522	\$ 12,433,162	\$ 12,289,187		
7			GEOHAZARD REPAIRS	\$ 9,002,8	23	\$ 8,114,545	\$ 10,338,102	\$ 9,151,823		
8			ANNUAL COST OF INSAR DATA						TECHNI	
9			C SK NETWORK COVERAGE	\$ 9,520,0	00	HIGH RESOLUTION			TECHN	ULUGY
10			SENTINEL-1 NETWORK COVERAGE	\$ 648,0	00	MED RESOLUTION			OPT	
11			CSK (1 SQ MI COVERAGE)	\$ 62,0	000	CONFIRMATIO	N FRAME COST		UPI	
12			SENTINEL (1 SQ MI COVERAGE)	\$ 26,0	000	CONTINUATION	VT NAME COST			
13			ANALYSIS YEAR	0		1	2	3	4	5
14			DISCOUNT RATE (ρ)		ρ					
15			ANNUAL IN SAR COST TO VDOT							
16			ANNUAL VDOT BENEFITS (B)			NO BENEFITS IN FIRST YEAR	F17*F18*\$G\$6+ F19*F20*\$G\$7	G17*G18*\$G\$6+ G19*G20*\$G\$7	H17*H18*\$G\$6+ H19*H20*\$G\$7	17* 18*\$G\$6+ 19* 20*\$G\$7
17			INITIAL DETECTION RATE: CULV	2	20%		20%	20%	20%	20%
18			INITIAL SAVINGS RATE: CULV	4	40%		40%	40%	40%	40%
19			INITIAL DETECTION RATE: GEOHZ	1	0%		10%	10%	10%	10%
20			INITIAL SAVINGS RATE: GEOHZ	ť	50%		50%	50%	50%	50%
21										
22										
23			NET ANNUAL VDOT BENEFIT			=E16-E15	=F16-F15	=G16-G15	=H16-H15	=116-115
24 25			NET PRESENT BENEFIT OVER ANALYSIS PERIOD	=NPV(D14,E	23,F	23,G23,H23,I23)				
26										

ANALYSIS ASSUMPTIONS EXTERNAL DATA

Excel Model – Step 3 (Optional: Efficiency gains over analysis period: increasing DR and SR)

	Α	В	С	D	E	F	G	Н	I
1									
2									
3									
4					RK-WIDE	0045			
5			EVENT COST DATA	2013	2014	2015	ANNUAL AVERAGE		
6			CULVERT REPLACEMENTS			\$ 12,433,162			
7			GEOHAZARD REPAIRS	\$ 9,002,823	\$ 8,114,545	\$ 10,338,102	\$ 9,151,823		
8			ANNUAL COST OF INSAR DATA		-	,		TECHN	01067
9			CSK NETWORK COVERAGE	\$ 9,520,000				TECHN	01001
10				\$ 648,000	MED RESOLUTION			OPT	ION
11			CSK (1 SQ MI COVERAGE)	\$ 62,000	CONFIRMATIO	N FRAME COST		011	
12			SENTINEL (1 SQ MI COVERAGE)	\$ 26,000					
13			ANALYSIS YEAR		1	2	3	4	5
14			DISCOUNT RATE (ρ)	3.0	6				
15			ANNUAL IN SAR COST TO VDOT						
16			ANNUAL VDOT BENEFITS (B ₁)		\$ -	\$ 1,440,726	\$ 1,588,401	\$ 1,751,212	\$ 1,930,711
7			INITIAL DETECTION RATE: CULV	20	<mark>6</mark> S 2,457,837	20%	21%	22%	23%
8			INITIAL SAVINGS RATE: CULV	40	<mark>6</mark> S 983,135	40%	42%	44%	46%
9			INITIAL DETECTION RATE: GEOHZ	10	6 5 915,182	10%	11%	11%	12%
20			INITIAL SAVINGS RATE: GEOHZ	50	6 S 457,591	50%	53%	55%	58%
1			ANNUAL GROWTH IN DETECTION RATE	55	6				
22			ANNUAL GROWTH IN SAVINGS RATE		6				
23			NET ANNUAL VDOT BENEFIT		GROS	S AND NET BENEFI	TS INCREASING OV	ER ANALYSIS PER	OD>
24			NET PRESENT BENEFIT OVER	?					
25			ANALYSIS PERIOD	•					
26									

ANALYSIS ASSUMPTIONS EXTERNAL DATA

Results for COSMO-SkyMed data (with more favorable assumptions)

	Α	В	с	D		E		F	G		Н		1	
1														
2														
3														
4					NETWORK-WIDE									
5			EVENT COST DATA	2013		2014		2015	ANNUAL AVERAGE					
6			CULVERT REPLACEMENTS			\$ 13,457,522	\$	12,433,162	\$ 12,289,187					
7			GEOHAZARD REPAIRS	\$ 9,00	2,823	\$ 8,114,545	\$	10,338,102	\$ 9,151,823					
8			ANNUAL COST OF INSAR DATA							C	OSMO-	Sh	Med	
9			CSK NETWORK COVERAGE		0,000	HIGH RESOLUTION				C	031010-	JN	vivieu	
10				\$ 64	8,000	MED RESOLUTION					(X-Ban	d) (lata	
11			CSK (1 SQ MI COVERAGE)	S	62,000	CONFIRMATION					(A Ball	~/ ~	aca	
12			SENTINEL (1 SQ MI COVERAGE)		26,000	SCEN	ARIO :					_		
13			YEAR	0		1		2	3		4		5	
14			DISCOUNT RATE (ρ)		3.0%									
15			ANNUAL IN SAR COST TO VDOT		20,000	\$ 9,520,000	\$	9,520,000		\$	9,520,000	\$	9,520,000	1
16			ANNUAL VDOT BENEFITS (B ₁)			\$-	\$	9,491,586	\$ 9,875,047	\$	10,273,998	\$	10,689,068	
17			INITIAL DETECTION RATE: CULV		100%	\$ 12,289,187		100%	102%		104%		106%	
18			INITIAL SAVINGS RATE: CULV		40%	\$ 4,915,675		40%	41%		42%		42%	
19			INITIAL DETECTION RATE: GEOHZ		100%	\$ 9,151,823		100%	102%		104%		106%	
20			INITIAL SAVINGS RATE: GEOHZ		50%	\$ 4,575,912		50%	51%		52%		53%	1
21			ANNUAL GROWTH IN DETECTION RATE		2%									
22			ANNUAL GROWTH IN SAVINGS RATE		2%									1
23			NET ANNUAL VDOT BENEFIT			(9,520,000)		(28,414)	355,047		753,998		1,169,068	1
24			NET PRESENT BENEFIT OVER	(\$7,266,2	17)									
25			ANALYSIS PERIOD											
26										_		_		

ANALYSIS ASSUMPTIONS

EXTERNAL DATA

Results for Sentinel-1 data (with less favorable assumptions)

	А	В	с		D	E		F	G	н	I	J	
1													
2													
з										-		,	
4					NETWOR		K-WIDE						
5			EVENT COST DATA		2013	2014		2015	ANNUAL AVERAGE				
6			CULVERT REPLACEMENTS		10,976,877	\$ 13,457,52	_	12,433,162	\$ 12,289,187				
7			GEOHAZARD REPAIRS	\$	9,002,823	\$ 8,114,54	5 \$	10,338,102	\$ 9,151,823				
8			ANNUAL COST OF INSAR DATA				_			Sont	inel-1		
9				\$	9,520,000	HIGH RESOLUTIO	•			Jenu	IIICI-T		
10				\$	648,000	MED RESOLUTION				(C-Ban	d) data		
11			CSK (1 SQ MI COVERAGE)	\$	62,000	CONFIRMATI				(C 2011	ajaata		
12			SENTINEL (1 SQ MI COVERAGE)	\$	26,000		NARI						
13			YEAR		0	1	_	2	3	4	5		
14			DISCOUNT RATE (ρ)		3.0%								
15			ANNUAL IN SAR COST TO VDOT		648,000	\$ 648,00	0\$	648,000	\$ 648,000	\$ 648,000	\$ 648,000		
16			ANNUAL VDOT BENEFITS (B ₁)			\$-	\$	1,440,726	\$ 1,440,726	\$ 1,440,726	\$ 1,440,726		
17			INITIAL DETECTION RATE: CULV		20%			20%	20%				
18			INITIAL SAVINGS RATE: CULV		40%			40%	40%	40%	40%		
19			INITIAL DETECTION RATE: GEOHZ		10%			10%	10%				
20			INITIAL SAVINGS RATE: GEOHZ		50%			50%	50%	50%	50%		
21			ANNUAL GROWTH IN DETECTION RATE		0%								
22			ANNUAL GROWTH IN SAVINGS RATE		0%								
23			NET ANNUAL VDOT BENEFIT			(648,00	D)	792,726	792,726	792,726	792,726]	
24			NET PRESENT BENEFIT OVER	\$2	,231,690								
25			ANALYSIS PERIOD	ΨZ	,								
26													

ANALYSIS ASSUMPTIONS

EXTERNAL DATA

Conclusions

- 1. VDOT's costs for culverts and geohazards are insufficient to justify a trial of network-wide high-resolution InSAR data, even with favorable assumptions such as maximum possible detection rates (DR) and efficiency gains over the analysis period:
 - Assuming DR _{culverts} = 100%, DR _{geohz} = 100%, SR _{culverts} = 40%, SR_{geohz} = 50%: Net Present Benefit for COSMO-SkyMed over 5 years is -\$9.3 million.
 - ➢ Initial SR must be ≥ 60% (culverts) and ≥ 52% (geohazards) for Net Present Benefit > 0 (assuming no growth in DR, SR over the analysis period).
- 2. VDOT's costs are sufficient to justify a trial of network-wide medium resolution InSAR data, even without favorable parameter assumptions.
 - Assuming DR _{culverts} = 20%, DR _{geohz} = 10%, SR _{culverts} = 40%, SR_{geohz} = 50%: Net Present Benefit for Sentinel-1 over 5 years is \$2.2 million.
 - This cushion provides funds for follow-up frames of high (or medium) resolution.

Economic Analysis of Network-Wide InSAR Monitoring

SOUTHAMPTON COUNTY, Va. (WAVY) — Crews are working to fix a sinkhole that formed in the early morning hours of Tuesday on Southampton Parkway, near the Suffolk city line.