

Decision-support and asset management from 3D change-maps: making simple bets from sophisticated data

Dave Gauthier, Ph.D. P.Eng., P.Geo. **Presented by:** January 13, 2020 Date:

Our goal is to forecast performance. Failure usually impacts performance. Where would you put your money?

BGC ENGINEERING INC.

Model Difference (m)

	0.080
	0.072
	0.069
	0.065
	0.061
	0.057-
	0.054-
	0.050-
	0.046-
	0.042
	0.039-
	0.035
	0.031
- P - College	0.027-
	0.024-0.020
A Contraction of the second second	

25

It moved. Is it moving? Now what do we do?

A (plausible/probable) failure process is represented, so our confidence is higher.

What does it mean when we don't see change? Could the wall still be changing?

There is a difference between detected movement, and movement

Change is usually temporal. But sometimes spatial. What does this tell us?

The power (or value) of evidence is a function of how much certainty it provides. 'Data entropy' is sometimes the term for this

CLASS I (low entropy)

Movement detected

Highest

Betting odds, power of evidence, certainty

CLASS III (high entropy)

Age Construction methods Fill material Strapping material Etc.

Lowest

The assessment logic and action follows from the power of the evidence

Observational approach requires a clear plan of action given different observations, which probably depends on time to failure

Time to failure

Decades

EXPECTED TIME TO FAILURE

	Time to failure	Description	Confidence level
	1 hr		
ſ	1 day	There is no doubt	> 99%
•	1 week 1 month	Many panels suggesting failure in the given range	> 75%
		Soveral papels suggesting failure in the given range	> E0%
		Several parters suggesting failure in the given range	> 50%
ĺ	1 vear	Few panels suggesting failure in the given range	> 25%
	10 years	Failure is possible in the given range	> 1%
	IU years		

BGC ENGINEERING INC.

Description

Panel detached, fill lost

Movement > 10 cm, major distress and fill loss

Movement of 10 cm, other distress

Movement of cm

Detectable movement

No movement but other factors

Change maps can help us detect which walls are falling off the 'typical' deterioration curve

Time

Thank you. Questions?

Prepared by: Date: D. Gauthier, Ph.D., P.Eng., P.Geo. January 13, 2020

FILE PATH